

## Economic Growth and Environment Sustainability (EGNES)

DOI: http://doi.org/10.26480/egnes.02.2025.56.64





CODEN: EGESCS

REVIEW ARTICLE

# DEVELOPMENT OF A REAL-TIME PREDICTIVE MAINTENANCE MODEL FOR COMBINED-CYCLE TURBINES INTEGRATED INTO STRUCTURAL RESILIENCE AND ECONOMIC RISK MITIGATION STRATEGIES FOR CRITICAL LOAD-BEARING FACILITIES UNDER EXTREME CLIMATE EVENTS

James Avevora, Francis Chukwudi Ezeb, Onum Friday Okoha, Selasi Agbale Aikinsa, Lawrence Anebi Enyejoa, Ignatius Idoko Adaudua

- <sup>a</sup>Department of Mechanical Engineering, Rowan University, Glassboro New Jersey, USA.
- <sup>b</sup>Department of Civil Engineering, Michigan Technological University, Houghton Michigan, USA.
- <sup>c</sup>Department of Economics, University of Ibadan, Ibadan, Nigeria
- <sup>d</sup>Department of Mechanical Engineering, Temple University, Philadelphia, USA
- <sup>e</sup>Department of Telecommunications, Enforcement Ancillary and Maintenance, National Broadcasting Commission Headquarters, Aso-Villa, Abuia. Niaeria
- Department of Civil Engineering, School of Engineering Technology, Benue State Polytechnic, Ugbokolo, Benue State, Nigeria \*Corresponding Author Email: onumfridayokoh@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### ARTICLE DETAILS

#### Article History:

Received 12 April 2025 Revised 18 May 2025 Accepted 25 June 2025 Available online 03 July 2025

#### **ABSTRACT**

As climate-induced hazards such as extreme heatwaves, flooding, and hurricanes increasingly threaten the operational continuity of energy-critical infrastructure, the integration of predictive maintenance into structural and economic resilience strategies has become imperative. This review examines the development and application of real-time predictive maintenance models for combined-cycle turbines (CCTs) deployed in critical load-bearing facilities such as hospitals, data centers, and industrial manufacturing hubs where energy supply reliability and structural integrity are interdependent. Emphasis is placed on the role of machine learning algorithms, including deep neural networks and reinforcement learning frameworks, in processing high-frequency sensor data for anomaly detection, failure prediction, and dynamic scheduling of maintenance actions. The study also explores how these models are embedded within digital twin environments to simulate both turbine performance and its effect on structural systems during climate extremes. From an economic perspective, the review analyzes how predictive maintenance reduces unscheduled downtimes, minimizes structural stress-induced failures, and lowers lifecycle operating and repair costs. Quantitative insights into avoided capital losses, enhanced return on infrastructure investment (ROI), and reduction in economic disruptions due to turbine failure are discussed. Furthermore, the paper evaluates policy and regulatory mechanisms that support the integration of smart maintenance frameworks into infrastructure resilience planning and highlights best practices for implementation in high-risk geographic zones. By aligning real-time maintenance intelligence with structural engineering and economic risk mitigation, this work identifies a transformative paradigm for safeguarding both the functional and financial sustainability of critical energy-structural systems in an era of increasing environmental volatility.

#### KEYWORDS

Predictive Maintenance, Combined-Cycle Turbines, Structural Resilience, Economic Risk Mitigation, Extreme Climate Events

#### 1. Introduction

#### ${\bf 1.1\ Overview\ of\ Climate\ Change\ and\ Infrastructure\ Vulnerability}$

The increasing frequency and severity of climate-induced events, such as extreme heatwaves, hurricanes, and flooding, pose unprecedented risks to the operational resilience of critical load-bearing facilities. These events not only challenge the physical integrity of infrastructure but also stress the reliability of embedded energy systems, particularly combined-cycle turbines (CCTs), which are essential for powering hospitals, data centers, and manufacturing plants. Climate change accelerates the degradation of energy assets through intensified thermal and mechanical stress, leading to unanticipated outages and structural failures (Panteli et al., 2017). For example, extreme heat can impair turbine cooling mechanisms, reduce efficiency, and trigger cascading effects on building systems dependent on

stable energy inputs.

The Intergovernmental Panel on Climate Change (IPCC) has also emphasized that infrastructure in coastal and high-risk zones faces compounded risks due to rising sea levels and intensified storm surges, necessitating real-time operational safeguards (Collins et al., 2019). In this context, predictive maintenance serves as a frontline defense, enabling energy systems to respond adaptively to environmental stressors. The integration of climate forecasting with high-frequency turbine diagnostics represents a vital step toward climate-resilient infrastructure strategy (Atalor et al, 2023).

#### 1.2 The Need for Predictive Maintenance in Resilience Strategy

As climate-induced stressors compromise the reliability of energy-critical

 Quick Response Code
 Access this article online

 Website:
 DOI:

 www.egnes.com.my
 10.26480/egnes.02.2025.56.64

systems, predictive maintenance emerges as a core component of structural and operational resilience strategies. This approach integrates advanced diagnostics with real-time monitoring to forecast mechanical degradation and prevent system failure in environments where downtime is not an option. Combined-cycle turbines (CCTs), operating in mission-critical facilities, require continuous health assessment due to their thermal complexity and susceptibility to fatigue under fluctuating environmental loads. Predictive maintenance leverages high-frequency data streams and machine learning models to proactively detect anomalies, localize faults, and optimize intervention schedules (Zhao et al., 2019).

Particularly in high-risk geographic zones, traditional maintenance schedules are insufficient to cope with the unpredictability of climate events. Predictive strategies built on industrial artificial intelligence allow infrastructure managers to align operational decision-making with real-time risk assessments (Lee et al., 2018). For instance, deep neural networks can anticipate rotor imbalance or thermal inefficiencies in turbines hours or days in advance, thereby preserving the structural integrity of the broader facility. This proactive framework enhances both system uptime and economic efficiency, embodying a data-driven evolution in resilience planning (Atalor et al., 2025).

#### 1.3 Scope and Objectives of the Review

This review focuses on the integration of real-time predictive maintenance models into the operational strategies of combined-cycle turbines (CCTs) used in critical load-bearing infrastructures. It investigates the role of intelligent maintenance systems in mitigating structural and economic vulnerabilities caused by climate-induced stressors. The scope includes the examination of machine learning algorithms particularly deep neural networks and reinforcement learning frameworks for anomaly detection, failure prediction, and adaptive maintenance scheduling. The review also explores how these technologies are embedded within digital twin environments to simulate turbine performance and its interaction with structural systems during extreme environmental events such as hurricanes, heatwayes, and flooding.

The objective is to present a comprehensive analysis of how predictive maintenance contributes to resilience planning by reducing unscheduled downtimes, avoiding structural failures, and enhancing lifecycle cost efficiency. This includes a discussion of economic metrics such as return on investment, capital loss avoidance, and operational continuity in mission-critical settings. The review further assesses the enabling role of policy frameworks and regulatory mechanisms in promoting the adoption of intelligent maintenance systems, especially in geographically vulnerable regions. Through this synthesis, the paper identifies best practices and strategic insights for implementing predictive maintenance as a core pillar of climate-resilient infrastructure design.

#### 1.4 Structure of the Paper

This paper is organized into several sections to provide a comprehensive analysis of Critical Control Technologies (CCTs) in load-bearing infrastructure systems. Following the introduction, Section 2 delves into the operational role of CCTs, examining their integration into infrastructure systems and the impact of external factors such as energy interdependence and climate stressors. Section 3 focuses on the technological advancements driving the evolution of CCTs, including anomaly detection, failure prediction, and dynamic maintenance scheduling. Section 4 explores the application of digital twins in performance simulation, emphasizing the coupling of structural and operational data, and predictive feedback loops in twin systems. Section 5 assesses the benefits of CCTs, including reductions in downtime and repair costs, improvements in asset lifecycle ROI, and mitigation of broader economic disruptions. Section 6 evaluates the regulatory frameworks, incentives, and best practices essential for fostering the adoption of CCTs in high-risk sectors. Finally, Section 7 synthesizes the key findings, outlines future research pathways, and provides strategic recommendations for stakeholders to ensure the successful implementation of these technologies.

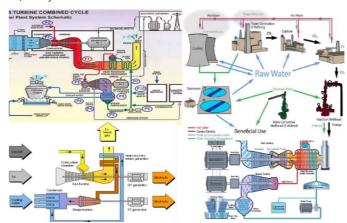
#### 2. COMBINED-CYCLE TURBINES IN CRITICAL INFRASTRUCTURE

#### 2.1 Operational Role of CCTs in Load-Bearing Facilities

Combined-cycle turbines (CCTs) serve as the backbone of power reliability in critical load-bearing facilities due to their high thermal efficiency, operational flexibility, and rapid load-following capability as presented in figure 1 (Abdulsalam et al., 2015). These attributes are especially vital in mission-critical infrastructures such as hospitals, data centers, and manufacturing plants where energy interruptions can lead to life-threatening or economically devastating consequences. The integration of

gas and steam turbines in CCT configurations allows for greater energy conversion efficiency often exceeding 60% and enhanced adaptability under varying demand loads (Baral et al., 2020). This capability ensures uninterrupted power supply during peak operational hours or under grid instability caused by climate extremes.

In facilities where energy reliability is intrinsically linked to structural stability and operational continuity, CCTs provide both baseload and backup power essential for maintaining environmental controls, computational operations, and automated manufacturing systems. For instance, in a high-tech data center, even a momentary turbine failure can compromise data integrity, leading to cascading system losses (Enyejo et al., 2024). Similarly, hospitals rely on CCTs to support critical care units, HVAC systems, and surgical operations, all of which demand high-reliability energy systems. These operational roles reinforce the necessity of real-time predictive maintenance to ensure turbine readiness and facility-wide resilience under volatile environmental conditions (Atalor et al., 2025).



**Figure 1:** Picture of Combined Cycle Technology (CCT) Schematics in Load-Bearing Energy Systems (Abdulsalam et al., 2015).

Figure 1 illustrates various configurations of combined cycle technologies (CCTs), showcasing their operational integration of gas and steam turbines to maximize energy efficiency and resource utilization. In loadbearing facilities, CCTs play a critical operational role by ensuring highefficiency electricity generation and thermal energy recovery, which enhances the stability and reliability of power supply under fluctuating load demands. The diagrams highlight key components such as gas turbines, heat recovery steam generators (HRSGs), condensers, and cooling systems, which together facilitate continuous load support while minimizing waste and emissions. Moreover, the incorporation of raw water treatment and CO<sub>2</sub> capture technologies, as depicted, underscores their adaptability in industrial applications where sustainable water and emissions management are vital. These operational features enable CCTs to support base-load and peak-load operations in energy-intensive infrastructures like refineries, data centers, and industrial parks, where uninterrupted power and efficient heat management are essential for maintaining structural and process integrity.

#### 2.2 Interdependence of Energy Systems and Structural Integrity

In critical infrastructure settings, the interdependence between energy systems and structural integrity is not only operational but deeply systemic. Combined-cycle turbines (CCTs), as integral energy sources, are physically embedded within structural ecosystems such as hospitals, industrial campuses, and data centers as represented in table 1 (Enyejo et al., 2024). The failure or degradation of a CCT does not merely result in energy loss but can induce cascading effects that compromise temperature control, load distribution, and pressure equilibrium parameters critical to maintaining the structural coherence of sensitive facilities (Panteli et al., 2017).

This coupling becomes especially pronounced during extreme climate events, where structural elements are already under thermal and mechanical stress. A failure in the energy subsystem can accelerate the fatigue of load-bearing components or disrupt climate-regulation systems, thereby compounding risks of material failure. For instance, the inability to maintain thermal thresholds due to turbine malfunction can cause steel expansion or concrete cracking, jeopardizing building stability. Effective resilience planning must therefore treat predictive maintenance not only as a tool for operational uptime but also as a safeguard for structural longevity, ensuring that energy and physical systems remain in synchronized equilibrium (Klein et al., 2015).

#### 2.3 Climate Stressors Impacting CCT Functionality

Climate-induced stressors significantly influence the operational integrity of combined-cycle turbines (CCTs), particularly in regions experiencing prolonged heatwaves, increased humidity, and extreme precipitation events. High ambient temperatures reduce the thermal efficiency of gas turbines by lowering air density, which impairs combustion processes and reduces power output during peak demand periods precisely when energy reliability is most critical (Craig et al., 2018). Additionally, increased atmospheric moisture can degrade turbine blade materials over time, promote corrosion, and interfere with sensor accuracy, further complicating performance predictions (Azonuche et al., 2024).

Flooding and hurricanes present mechanical and electrical challenges, including the inundation of turbine enclosures, short-circuiting of control systems, and structural vibration anomalies due to wind-induced instability. In facilities without climate-adaptive protective enclosures or real-time sensor diagnostics, these stressors can lead to unscheduled outages and long-term structural degradation. Moreover, the performance of CCTs integrated with renewable energy systems may also be destabilized by unpredictable weather patterns that shift operational baselines (Panos et al., 2021). Predictive maintenance, therefore, becomes critical in compensating for these stressors by identifying vulnerability thresholds and enabling preemptive adjustments to turbine operation under evolving climate conditions (Okika et al., 2025).

| Table 1: Summary of Interdependence of Energy Systems and Structural Integrity |                                                                                                                  |                                                  |                                                                            |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|
| Energy System Component                                                        | Impact on Structural Integrity                                                                                   | Dependencies                                     | Examples                                                                   |
| Power Supply Systems                                                           | Affects the operational capacity of structural systems                                                           | Energy availability and reliability              | Power grids supporting heating and cooling systems in large infrastructure |
| Heating and Cooling Systems                                                    | Changes in energy supply can<br>lead to structural stress from<br>temperature fluctuations                       | Efficiency of energy production and distribution | HVAC systems in hospitals or data centers sensitive to energy flow         |
| Renewable Energy Sources                                                       | Reduced or fluctuating energy<br>generation can impact structural<br>load management systems                     | Integration of energy storage and grid stability | Solar panels and wind turbines affecting building operations               |
| Backup Generators                                                              | Can provide emergency power,<br>but over-reliance may strain<br>structural systems in non-<br>optimal conditions | Fuel supply and maintenance                      | Diesel generators in critical infrastructure, such as airports             |

#### 3. MACHINE LEARNING IN PREDICTIVE MAINTENANCE MODELS

#### 3.1 Anomaly Detection Using High-Frequency Sensor Data

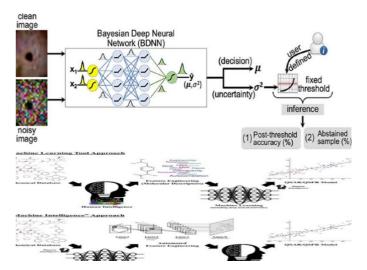
Anomaly detection is a critical component of predictive maintenance, especially when dealing with high-frequency sensor data generated by combined-cycle turbines (CCTs) in operational environments (Azonuche et al., 2024). These sensors, which monitor variables such as temperature, pressure, and vibration, produce vast amounts of data that can be leveraged to identify early signs of turbine malfunctions (Jiang et al., 2019). Machine learning models, including deep neural networks and decision trees, process this high-frequency data to detect anomalies that deviate from normal operational patterns. By identifying these anomalies in real time, maintenance teams can intervene before these issues lead to significant failures or downtimes (Okoh et al., 2025).

In industrial systems, the ability to detect anomalies as soon as they arise is particularly important given the complexity and integration of the CCTs with other critical infrastructure systems (Xu et al., 2020). For instance, if a vibration sensor detects an abnormal pattern indicative of turbine imbalance, it triggers preventive maintenance actions, such as recalibration or inspection. This approach helps in mitigating risks and optimizing performance, ultimately extending the lifecycle of CCTs while maintaining operational continuity across critical infrastructure (Azonuche et al., 2024).

#### 3.2 Failure Prediction with Deep Neural Networks

Deep neural networks (DNNs) have proven to be powerful tools in predicting the failure of combined-cycle turbines (CCTs) by processing large datasets generated from operational sensors. These networks are trained on historical operational data, including parameters such as temperature, vibration, and pressure, to identify intricate patterns that precede turbine failure as presented in figure 2 and table 2 (Chen et al., 2019). Unlike traditional predictive models, DNNs can recognize nonlinear relationships between variables, providing more accurate predictions in complex, dynamic environments like those found in critical infrastructure systems (Okoh et al., 2025).

By incorporating time-series data, DNNs can forecast turbine malfunctions, such as bearing wear, fluid leakage, or blade fatigue, by detecting subtle shifts in the data that indicate imminent failure. For instance, changes in the vibration signature of a turbine can signal imbalance or wear on turbine blades, and DNNs can flag these anomalies well in advance, triggering preventive actions (Liu et al., 2020). This capability enhances reliability and minimizes the risk of unexpected failures, ensuring that CCTs continue to function efficiently and safely within mission-critical facilities.



**Figure 2:** Picture of Bayesian Deep Neural Network Architecture for Failure Prediction and Uncertainty Quantification in Noisy Environments (Chen et al., 2019).

Figure 2 illustrates the application of Bayesian Deep Neural Networks (BDNNs) in failure prediction, emphasizing uncertainty quantification for robust decision-making. BDNNs enhance conventional deep learning models by outputting not only predictions but also associated uncertainties  $(\mu,\,\sigma^2)$ , allowing systems to assess the confidence of their classifications, especially in noisy or ambiguous input scenarios. This is critical in failure prediction for load-bearing structures or industrial assets where false positives or overlooked failures can be catastrophic. By incorporating user-defined or fixed thresholds for uncertainty, the system can abstain from making unreliable predictions, improving post-threshold accuracy. The bottom section contrasts traditional machine learning workflows with modern machine intelligence approaches—where feature engineering is automated demonstrating how deep learning advances, including BDNNs, reduce human intervention and improve model reliability in high-stakes environments.

#### 3.3 Reinforcement Learning for Dynamic Maintenance Scheduling

Reinforcement learning (RL) has emerged as a transformative approach for dynamic maintenance scheduling in complex energy systems, such as combined-cycle turbines (CCTs). By modeling maintenance as a sequential decision-making process, RL algorithms can learn optimal policies that manage trade-offs between cost, reliability, and operational longevity (Hao et al., 2021). These algorithms interact continuously with the environment, adapting in real time to turbine degradation signals,

fluctuating loads, and external environmental conditions.

In CCT applications, RL agents leverage real-time sensor data and prognostics and health management (PHM) systems to forecast failures and initiate timely maintenance actions (Pinciroli et al., 2020). For example, deep Q-networks or actor-critic models can prioritize actions

such as turbine blade inspections or compressor recalibrations based on predicted degradation patterns. This not only reduces unplanned outages but also ensures operational continuity during climate-induced stress events. Through intelligent decision-making, RL empowers energy infrastructure to enhance resilience, optimize maintenance costs, and safeguard structural systems in high-risk environments.

| Table 2: Summary of Failure Prediction with Deep Neural Networks |                                                    |                                              |                                                                                |
|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|
| Element in Failure Prediction                                    | Role in Failure Prediction                         | Method Used                                  | Examples                                                                       |
| Sensor Data                                                      | Provides real-time inputs for model analysis       | Deep learning algorithms (e.g., CNN,<br>RNN) | Vibration sensors predicting mechanical failures in turbines                   |
| Historical Maintenance Records                                   | Offers data to train models on past failures       | Data preprocessing, feature extraction       | Using past data of machinery failures for prediction models in factories       |
| Model Training                                                   | Trains the neural network to predict failures      | Supervised learning and validation           | Training models using labeled failure data to detect engine issues in aircraft |
| Predictive Analytics                                             | Identifies potential failures<br>before they occur | Predictive maintenance algorithms            | Using deep neural networks to predict cracks in structural beams in bridges    |

#### 4. INTEGRATION WITH DIGITAL TWIN ENVIRONMENTS

#### 4.1 Digital Twins for Performance Simulation

Digital twins (DTs) have become instrumental in simulating and optimizing the performance of combined-cycle turbines (CCTs). By creating virtual replicas of physical systems, DTs enable real-time monitoring, predictive maintenance, and performance forecasting. As presented in figure 3 developed a digital twin model for combined cycle power plants that achieved high predictive accuracy, with an R<sup>2</sup> score of 0.993 and a mean absolute percentage error (MAPE) of 0.37%, demonstrating its effectiveness in forecasting power output (Zhao et al,2024).

In another study, introduced a deep learning framework for gas turbine performance digital twins, which enhanced fault diagnosis capabilities (Hu et al., 2023). Their model effectively identified performance degradation patterns, enabling timely maintenance interventions. The integration of deep learning techniques with digital twin models allows for more accurate simulations of complex turbine behaviors under varying operational conditions (Ijiga et al., 2024)

These advancements in digital twin technology facilitate proactive maintenance strategies and operational efficiency in CCTs. By leveraging real-time data and advanced analytics, operators can anticipate potential issues, optimize performance, and extend the lifespan of critical components. The implementation of DTs thus represents a significant step forward in enhancing the resilience and reliability of energy systems (Avevor et al., 2025).

Figure 3 visually represents the concept of digital twins as a dynamic integration of physical systems with their virtual counterparts, enabling real-time performance simulation and optimization. The robotic arm interfacing with a digital holographic globe signifies the use of sensors and IoT-enabled components to continuously capture operational data from physical assets. This data feeds into a digital replica, shown through interconnected gears and nodes, allowing for predictive analysis, scenario testing, and continuous performance monitoring. In industrial and loadbearing facility contexts, such as manufacturing or infrastructure, digital twins enable simulation of stress loads, wear patterns, and environmental interactions, ensuring proactive maintenance and improved design efficiency. The circular interface with icons around "Digital Twin" emphasizes its role in integrating various domains such as AI, analytics, and system engineering for comprehensive system behavior modeling.



**Figure 3:** Picture of Visualization of Digital Twin Technology for Real-Time Performance Simulation and Predictive Optimization in Industrial Systems (Zhao et al., 2024)

#### 4.2 Coupling Structural and Operational Data

The coupling of structural and operational data is critical to advancing the performance and resilience of combined-cycle turbines (CCTs) in critical infrastructure. Structural data, such as strain, fatigue, and vibration metrics, provide insight into the physical condition of turbine components. When this information is integrated with operational parameters like load profiles, combustion temperatures, and rotational speed, the result is a comprehensive and real-time understanding of system behavior under varying conditions (Azonuche et al., 2025). This data fusion facilitates

condition-based monitoring and supports the early detection of degradation trends, leading to more efficient maintenance scheduling and a reduction in unplanned downtimes (Mores et al., 2018).

From a resilience perspective, this integration enhances operational decision-making under dynamic stressors such as extreme weather or grid fluctuations. Demonstrate that predictive frameworks leveraging both types of data significantly improve system adaptability, particularly within distributed energy networks (Fallahi et al., 2020). In practice, machine learning algorithms trained on synchronized datasets can identify

complex correlations between operational stress and structural fatigue, enabling predictive diagnostics. This synergy not only supports cost-effective turbine management but also reinforces the structural integrity of load-bearing energy systems against climate-induced disruptions.

#### 4.3 Predictive Feedback Loops in Twin Systems

Predictive feedback loops are integral to the efficacy of digital twin systems, particularly in the context of combined-cycle turbines (CCTs). These loops facilitate continuous synchronization between the physical asset and its virtual counterpart, enabling real-time monitoring and adaptive control. Represented in table 3 emphasize the importance of dynamic data-driven learning in digital twins, highlighting how feedback mechanisms allow for the assimilation of live data into predictive models (Kapteyn et al., 2020). This integration enhances the accuracy of

simulations and supports proactive decision-making, thereby improving the reliability and efficiency of CCT operations.

In practical applications, predictive feedback loops enable digital twins to adjust operational parameters in response to changing conditions. For instance, demonstrate the use of time-series deep neural networks within digital twin frameworks to facilitate real-time decision-making in additive manufacturing (Gao et al., 2025). By employing model predictive control strategies, these systems can anticipate potential issues and implement corrective actions before failures occur. Translating this approach to CCTs, predictive feedback loops can optimize maintenance schedules, reduce downtime, and extend the lifespan of critical components. The incorporation of such advanced feedback mechanisms is thus essential for the development of resilient and efficient energy systems (Azonuche et al., 2025).

| Table 3: Summary of Predictive Feedback Loops in Twin Systems |                                                            |                                                      |                                                                                                  |
|---------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Aspect of Predictive<br>Feedback Loops                        | Role in Twin Systems                                       | Method Used                                          | Examples                                                                                         |
| Real-Time Data Integration                                    | Continuously updates the twin model for accuracy           | Internet of Things (IoT) sensors,<br>data streaming  | Monitoring equipment performance in real-time to adjust system behavior                          |
| Feedback Mechanism                                            | Facilitates system adjustment based on model outputs       | Machine learning algorithms for adaptive control     | Automated system adjustments in<br>smart grids based on real-time load<br>data                   |
| Predictive Analytics                                          | Anticipates system behavior and identifies issues          | Predictive maintenance models,<br>AI-driven analysis | Detecting potential failures in<br>machinery by analyzing trends in<br>sensor data               |
| Decision-Making Support                                       | Enhances decision-making by providing insights from models | Decision support systems, optimization techniques    | Using predictive feedback to schedule maintenance or operational changes in manufacturing plants |

#### 5. ECONOMIC IMPACTS OF PREDICTIVE MAINTENANCE

#### 5.1 Reduction of Unscheduled Downtime and Repair Costs

Implementing predictive maintenance strategies in combined-cycle turbines (CCTs) significantly reduces unscheduled downtime and associated repair costs. By leveraging digital twin models, operators can simulate and monitor turbine performance in real-time, allowing for the early detection of anomalies and potential failures as represented in table 4. The study demonstrated that their digital twin approach achieved high predictive accuracy, enabling timely interventions that prevent unexpected outages and minimize repair expenses (Zhao et al., 2024). This proactive maintenance approach not only enhances operational efficiency but also extends the lifespan of critical components, leading to substantial cost savings.

Furthermore, integrating predictive maintenance into multi-microgrid systems enhances overall resilience and operational efficiency. The study proposed a predictive maintenance framework that incorporates both structural health monitoring and operational data (Fallahi et al., 2020). Their model effectively schedules maintenance activities based on real-time data analysis, reducing the likelihood of sudden failures and optimizing resource allocation. By adopting such predictive strategies, energy systems can achieve higher reliability, lower maintenance costs, and improved performance, ensuring a more sustainable and cost-effective operation (Raphael et al., 2025).

#### 5.2 Improved Lifecycle ROI of Infrastructure Assets

The integration of digital twin technologies into infrastructure asset management has significantly enhanced the lifecycle return on investment (ROI) by enabling proactive maintenance and operational optimization. By creating a virtual replica of physical assets, digital twins facilitate real-time monitoring and predictive analytics, allowing for timely interventions that prevent costly failures and extend asset lifespan. The authors presented in figure 4 demonstrated that employing model predictive control within digital twin frameworks in additive manufacturing leads to improved decision-making and resource allocation, directly impacting the ROI positively (Gao et al., 2025). This approach ensures that maintenance activities are performed precisely when needed, reducing unnecessary expenditures and downtime.

Furthermore, the fusion of dynamic data-driven learning with physics-based modeling, as discussed, enhances the accuracy of simulations and forecasts within digital twins (Kapteyn et al., 2020). This hybrid modeling approach allows for more reliable predictions of asset behavior under various conditions, facilitating better planning and investment decisions.

By leveraging these advanced modeling techniques, organizations can optimize asset performance throughout its lifecycle, ensuring maximum value extraction and improved ROI (Atalor, 2019). The adoption of digital twin technologies thus represents a strategic investment in the sustainable and cost-effective management of infrastructure assets (Okoh et al., 2024).

Figure 4 illustrates the Asset Lifecycle, detailing the ten critical stages from request to retirement. In the context of improving the Lifecycle Return on Investment (ROI) of infrastructure assets, this model highlights how systematic planning, utilization, and retirement of assets can maximize value and minimize waste. By ensuring that assets are effectively acquired, properly maintained, reassigned when necessary, and retired responsibly, organizations can extend asset lifespan, reduce downtime, optimize resource allocation, and improve decision-making based on performance data. These practices collectively enhance the financial and operational returns throughout the asset's life.



**Figure 4:** Picture of Comprehensive Asset Lifecycle Framework for Maximizing Infrastructure ROI (Gao et al., 2025).

#### 5.3 Mitigation of Broader Economic Disruptions

The integration of digital twin technologies into infrastructure systems plays a pivotal role in mitigating broader economic disruptions by enhancing supply chain resilience and operational efficiency (Atalor, 2024). Digital twins enable real-time monitoring and predictive analytics, allowing for proactive identification and resolution of potential issues before they escalate into significant disruptions. The recent study emphasize that the strategic implementation of digital twins, coupled with disruption mitigation strategies, significantly enhances supply chain resilience, thereby reducing the economic impact of unforeseen events (Hossain et al., 2024).

Moreover, the adoption of predictive maintenance facilitated by digital twins contributes to economic stability by minimizing unexpected equipment failures and associated downtime. The authors highlight that predictive maintenance strategies, underpinned by digital twin technologies, enable timely interventions, thereby reducing maintenance costs and preventing production losses (Abd Wahab et al., 2024). This proactive approach not only ensures the continuous operation of critical infrastructure but also safeguards against the cascading effects of disruptions on the broader economy. By leveraging digital twins for predictive maintenance and strategic planning, organizations can enhance their operational resilience, ensuring sustained economic performance even amidst unforeseen challenges (Okoh et al., 2024).

| Table 4: Summary of Reduction of Unscheduled Downtime and Repair Costs |                                                   |                                                   |                                                                                            |  |
|------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Key Factor                                                             | Impact on Downtime                                | Method for Reduction                              | Examples                                                                                   |  |
| Predictive Maintenance                                                 | Reduces unexpected equipment failures             | AI-driven predictive models,<br>sensor data       | Using vibration sensors to predict failure in motors, scheduling repairs before breakdowns |  |
| Real-Time Monitoring                                                   | Allows immediate detection of faults              | IoT sensors, real-time data collection            | Continuous monitoring of HVAC systems to prevent failure and downtime                      |  |
| Data-Driven Insights                                                   | Informs decision-making for maintenance schedules | Big data analytics, machine<br>learning           | Analyzing historical data to predict and preemptively fix issues in power plants           |  |
| Optimized Resource<br>Allocation                                       | Ensures timely intervention and reduces delays    | Automated scheduling, resource management systems | Assigning the right maintenance team to high-priority issues based on predictive data      |  |

### 6. POLICY AND REGULATORY SUPPORT FOR SMART MAINTENANCE INTEGRATION

#### 6.1 Existing Regulatory Frameworks and Gaps

The deployment of digital twin technologies in infrastructure sectors has outpaced the development of comprehensive regulatory frameworks, leading to significant governance challenges. The study represented in table 5 highlight that while digital twins offer transformative potential for urban planning and management, their integration into city infrastructures raises complex issues related to data governance, privacy, and accountability (Ketzler et al., 2023). The absence of standardized regulations across jurisdictions complicates the establishment of clear guidelines for data ownership, interoperability, and ethical use, potentially hindering the widespread adoption of digital twin solutions (Omachi et al., 2025).

In the oil and gas industry, the implementation of digital twin technologies faces similar regulatory hurdles. The recent study discuss that the lack of specific policies addressing digital twin applications in this sector leads to uncertainties in compliance, safety standards, and intellectual property rights (Esiri et al., 2024). The authors emphasize the need for regulatory bodies to develop tailored frameworks that consider the unique operational contexts of digital twins, ensuring that these technologies can be effectively integrated while maintaining safety and compliance standards. Addressing these regulatory gaps is crucial for harnessing the full potential of digital twins in enhancing infrastructure resilience and efficiency (Okoh et al., 2024).

#### 6.2 Incentives and Funding Mechanisms

Incentives and funding mechanisms play a crucial role in ensuring the successful implementation of resilience strategies for infrastructure. Public-private partnerships (PPPs) are often seen as a robust method for leveraging both private sector efficiency and public sector support (McKeen et al., 2023). These collaborations enable risk-sharing and financial flexibility, which can reduce the burden on public finances. Furthermore, various financing models, such as green bonds and resilience funds, are being explored to attract private investment and align financial returns with long-term sustainability goals. Such mechanisms provide both immediate capital for infrastructure development and ensure the funds are allocated effectively toward projects that build resilience to future climate-related risks.

Incentives for private sector participation, such as tax breaks, government-backed loans, or guaranteed returns, can further enhance the

attractiveness of these investments. At the same time, governments are increasingly focusing on funding mechanisms that prioritize sustainability and the long-term viability of infrastructure assets (Smith et al., 2022). These funding approaches not only help mitigate climate risks but also ensure that infrastructure remains operational during extreme events, reducing economic disruptions and promoting the continued operation of critical services (Atalor, 2022).

#### 6.3 Best Practices for Policy Design in High-Risk Areas

In high-risk areas, designing effective policies for resilience requires a multi-disciplinary approach that integrates both technical and social dimensions of risk management. Best practices suggest that policy frameworks must be dynamic and adaptable to the evolving nature of risks, especially in infrastructure and critical systems (Okoh et al., 2024). The emphasis is placed on promoting adaptive governance structures that can effectively respond to climate stressors and unforeseen events. A focus on early risk identification, community engagement, and the integration of climate data into decision-making processes are key components for fostering long-term resilience as presented in figure 5 (Kouadio et al., 2020). Additionally, policy frameworks should prioritize equitable distribution of resources to vulnerable populations and ensure that all stakeholders, including local communities, are actively involved in the policy design and implementation processes (Atalor, 2022).

Another critical aspect is the role of monitoring and feedback mechanisms in policy effectiveness. Policies designed for high-risk areas should include regular assessments of infrastructure vulnerability and the integration of new technologies such as digital twins for real-time monitoring (Nguyen et al., 2021). By continuously evaluating policy impact and adjusting strategies as needed, decision-makers can enhance the resilience of critical infrastructure systems and improve overall risk management strategies.

Figure 5 illustrates critical aspects of infrastructure monitoring and decision-making, which are fundamental in formulating best practices for policy design in high-risk areas. In high-risk environments such as those vulnerable to cyberattacks, natural disasters, or equipment failure real-time data collection, system diagnostics, and proactive maintenance, as depicted in the image, become essential. Policies should emphasize robust infrastructure oversight, integration of predictive analytics, and well-trained personnel to ensure resilience and responsiveness. Such data-driven and technologically supported frameworks help policymakers implement targeted interventions that reduce risk, improve system reliability, and safeguard critical assets and human capital.



**Figure 5:** Picture of Data-Driven Infrastructure Monitoring for Informed Policy Design in High-Risk Environments (Kouadio et al., 2020).

| Table 5: Summary of Existing Regulatory Frameworks and Gaps |                                                     |                                                           |                                                                              |
|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|
| Regulatory Framework                                        | Current Strengths                                   | Existing Gaps                                             | Potential Improvements                                                       |
| Safety and Compliance Standards                             | Established safety protocols for infrastructure     | Limited integration with new technologies (e.g., IoT, AI) | Updating safety standards to include emerging technologies and digital twins |
| Environmental Regulations                                   | Clear guidelines on environmental impact assessment | Insufficient focus on sustainability in maintenance       | Incorporating sustainable practices into regulatory frameworks               |
| Operational Performance<br>Monitoring                       | Protocols for equipment performance assessment      | Lack of real-time data usage for decision-making          | Implementing real-time performance monitoring and data-driven insights       |
| Risk Management Policies                                    | Established risk management processes for failures  | Insufficient focus on predictive maintenance              | Updating policies to support predictive analytics and proactive maintenance  |

#### 7. CONCLUSION AND RECOMMENDATIONS

#### 7.1 Synthesis of Key Findings

The analysis of the operational role of Critical Control Technologies (CCTs) in load-bearing facilities reveals significant advancements in performance optimization, particularly in the context of infrastructure management. Through the integration of real-time sensor data, CCTs offer improved monitoring capabilities, allowing for early detection of structural anomalies and potential failure points. This early detection reduces the likelihood of catastrophic failures and unscheduled downtime, contributing to cost savings and enhanced operational efficiency. Moreover, the interdependence between energy systems and structural integrity has proven essential for maintaining the overall reliability of these facilities. The seamless integration of energy management systems with structural health monitoring systems ensures a more resilient infrastructure capable of withstanding external stressors such as climate-related factors and operational pressures.

The application of predictive analytics, particularly through deep learning techniques and reinforcement learning, has emerged as a transformative tool in maintenance and failure prediction within these facilities. By leveraging high-frequency sensor data, predictive models can forecast the need for maintenance and identify potential system failures before they occur. This proactive approach extends the lifecycle of infrastructure assets and reduces repair costs, contributing to the overall financial sustainability of the facility. The findings suggest that by coupling predictive feedback loops with digital twin technologies, facilities can achieve not only greater efficiency but also enhanced decision-making capabilities, leading to better resource allocation and long-term cost savings.

#### 7.2 Future Research and Innovation Pathways

Future research in the realm of Critical Control Technologies (CCTs) and infrastructure management should focus on refining predictive models and enhancing their accuracy. This can be achieved by integrating advanced machine learning algorithms, particularly deep reinforcement learning, to improve the real-time adaptability of predictive maintenance systems. Researchers should also explore the integration of emerging technologies, such as quantum computing, to process large-scale sensor data more efficiently. Additionally, further exploration is needed in the

area of sensor network optimization to ensure high data accuracy and minimize communication delays, which could significantly impact the reliability of predictive systems in load-bearing facilities.

Another important research pathway lies in the development of more robust frameworks for coupling digital twin models with operational systems across various industries. Innovations in this space could involve expanding the scope of digital twins to incorporate environmental factors and climate change scenarios, which would allow for more resilient infrastructure planning. Furthermore, as regulatory frameworks and policy structures evolve, future research could focus on creating standardized protocols for the implementation of CCTs, ensuring their scalability across different regions and industries. This would allow for broader adoption of these technologies, ultimately leading to a global improvement in infrastructure management practices and a reduction in the economic impacts of failures.

#### $7.3\ Strategic\ Recommendations\ for\ Stakeholders$

Stakeholders involved in the development and implementation of Critical Control Technologies (CCTs) should prioritize investing in advanced sensor networks and predictive maintenance tools. By focusing on improving the accuracy and reliability of data collection, stakeholders can enhance the performance of load-bearing infrastructure. Collaborative efforts between industry leaders, technology developers, and regulatory bodies are essential for establishing common standards and frameworks that facilitate the widespread adoption of CCTs. This would not only help mitigate risks associated with infrastructure failures but also enable more efficient and sustainable resource management. Stakeholders should also explore public-private partnerships to drive innovation and support the scaling of these technologies across various sectors.

Additionally, it is crucial for stakeholders to invest in workforce development and training programs to equip employees with the necessary skills to operate and maintain advanced CCT systems. As digital twins and predictive analytics become more integral to infrastructure management, there will be an increasing demand for professionals who can navigate these complex systems. Stakeholders should also consider policy advocacy to influence the establishment of supportive regulatory environments that promote the integration of CCTs. This includes lobbying for incentives and funding mechanisms that make it easier for businesses to adopt and scale these technologies, ultimately contributing

to a more resilient and cost-effective infrastructure system.

#### REFERENCES

- Abd Wahab, N. H., Hasikin, K., Wee Lai, K., Xia, K., Bei, L., Huang, K., and Wu, X., 2024. Systematic review of predictive maintenance and digital twin technologies: Challenges, opportunities, and best practices. PeerJ Computer Science, 10, e1943. https://doi.org/10.7717/peerjcs.1943
- Abdulsalam, I., Naterer, G. F., and Dincer, I., 2015. Performance assessment of combined cycle power plants with various configurations. Energy Conversion and Management, 103, Pp. 123–135. https://doi.org/10.1016/j.enconman.2015.06.055
- Atalor, S. I., Raphael, F. O. and Enyejo, J. O., 2023. Wearable Biosensor Integration for Remote Chemotherapy Monitoring in Decentralized Cancer Care Models. International Journal of Scientific Research in Science and Technology Volume 10, Issue 3 (www.ijsrst.com) doi: https://doi.org/10.32628/IJSRST23113269
- Atalor, S. I. and Omachi, A., 2025. Transformer-Based Natural Language Processing Models for Mining Unstructured Oncology Clinical Notes to Improve Drug Matching, International Journal of Scientific Research in Science, Engineering and Technology Volume 12, Issue 2 doi: https://doi.org/10.32628/IJSRSET25122197
- Atalor, S. I., 2019. Federated Learning Architectures for Predicting Adverse Drug Events in Oncology Without Compromising Patient Privacy Iconic Research And Engineering Journals Jun 2019 | IRE Journals | Volume 2 Issue 12 | ISSN: 2456-8880
- Atalor, S. I., 2022. Data-Driven Cheminformatics Models for Predicting Bioactivity of Natural Compounds in Oncology. International Journal of Scientific Research and Modern Technology, 1(1), Pp. 65–76. https://doi.org/10.38124/ijsrmt.v1i1.496
- Atalor, S. I., Ijiga, O. M., and Enyejo, J. O., 2023. Harnessing Quantum Molecular Simulation for Accelerated Cancer Drug Screening. International Journal of Scientific Research and Modern Technology, 2(1), Pp. 1–18. https://doi.org/10.38124/ijsrmt.v2i1.502
- Atalor, S. I., and Enyejo, J. O., 2025. Mobile Health Platforms for Medication Adherence among Oncology Patients in Rural Populations International Journal of Innovative Science and Research Technology Volume 10, Issue 5, ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may415
- Atalor, S. I., 2022. Blockchain-Enabled Pharmacovigilance Infrastructure for National Cancer Registries. International Journal of Scientific Research and Modern Technology, 1(1), Pp. 50–64. https://doi.org/10.38124/ijsrmt.v1i1.493
- Atalor, S. I., 2024. Building a geo-analytic public health dashboard for tracking cancer drug deserts in U.S. counties, International Medical Science Research Journal Volume 4, Issue 11, Fair East Publishers DOI: 10.51594/imsrj.v4i11.1932
- Atalor, S. I. and Enyejo, J. O., 2025. Integration of extended reality (XR) for oncology pharmacist training in chemotherapeutic compounding and risk mitigation International Medical Science Research Journal Volume 5, Issue 4, DOI URL: https://doi.org/10.51594/imsrj.v5i4.1931
- Avevor, J., Aikins, S. A., Okoh, O. F., and Enyejo, L. A., 2025. Development of a predictive maintenance framework for combined-cycle turbines using real-time sensor data and machine learning. International Journal of Scientific Research in Science, Engineering and Technology, 12(2), Pp. 594–611. https://doi.org/10.32628/IJSRSET25122185
- Azonuche T. I, Aigbogun, M. E and Enyejo, J. O., 2025. Investigating Hybrid Agile Frameworks Integrating Scrum and Devops for Continuous Delivery in Regulated Software Environments. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1164
- Azonuche, T. I., and Enyejo, J. O., 2024. Agile Transformation in Public Sector IT Projects Using Lean-Agile Change Management and Enterprise Architecture Alignment. International Journal of Scientific Research and Modern Technology, 3(8), Pp. 21–39. https://doi.org/10.38124/ijsrmt.v3i8.432
- Azonuche, T. I., and Enyejo, J. O., 2024. Evaluating the Impact of Agile Scaling Frameworks on Productivity and Quality in Large-Scale Fintech Software Development. International Journal of Scientific

- Research and Modern Technology, 3(6), Pp. 57-69. https://doi.org/10.38124/ijsrmt.v3i6.449
- Azonuche, T. I., and Enyejo, J. O., 2024. Exploring Al-Powered Sprint Planning Optimization Using Machine Learning for Dynamic Backlog Prioritization and Risk Mitigation. International Journal of Scientific Research and Modern Technology, 3(8), Pp. 40–57. https://doi.org/10.38124/ijsrmt.v3i8.448.
- Azonuche, T. I., and Enyejo, J. O., 2025. Adaptive Risk Management in Agile Projects Using Predictive Analytics and Real-Time Velocity Data Visualization Dashboard. International Journal of Innovative Science and Research Technology Volume 10, Issue 4, April 2025 ISSN No: 2456-2165 https://doi.org/10.38124/ijisrt/25apr2002
- Baral, S., Kim, J., and Lee, S., 2020. Combined cycle gas turbine power plant with waste heat recovery: A review and future perspectives. Renewable and Sustainable Energy Reviews, 119, 109585. https://doi.org/10.1016/j.rser.2019.109585
- Chen, Y., and Zhang, Y., 2019. Deep learning for failure prediction in mechanical systems: A review. Journal of Mechanical Science and Technology, 33(4), Pp. 1293–1302. https://doi.org/10.1007/s12206-019-0327-9
- Collins, M., Sutherland, M., Bouwer, L., Cheong, S. M., Frölicher, T., Jacot Des Combes, H., and Roxy, M. K., 2019. Extremes, abrupt changes and managing risks. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 3(2), Pp. 589–650.
- Craig, M. T., Cohen, S., Macknick, J., Draxl, C., and Guerra, O. J., 2018. Climate change impacts on electricity system planning and operation: Literature review and research needs. Energy, 165, Pp. 84–92. https://doi.org/10.1016/j.energy.2018.09.060
- Enyejo, J. O., Obani, O. Q, Afolabi, O. Igba, E. and Ibokette, A. I., 2024. Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), Pp. 132– 150.
  - https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf
- Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E and Obani, O. Q., 2024.
  Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), Pp. 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
- Esiri, A. E., Sofoluwe, O. O., and Ukato, A., 2024. Digital twin technology in oil and gas infrastructure: Policy requirements and implementation strategies. Energy Science and Technology Journal, 5(6), Pp. 45–59. https://doi.org/10.51594/estj.v5i6.1221
- Fallahi, F., Yildirim, M., Lin, J., and Wang, C., 2020. Predictive multimicrogrid generation maintenance: Formulation and impact on operations and resilience. arXiv preprint arXiv:2012.14926. https://arxiv.org/abs/2012.14926
- Gao, J., Cao, W., and Chen, W., 2025. Real-time decision-making for digital twin in additive manufacturing with model predictive control using time-series deep neural networks. Journal of Manufacturing Systems, 80, Pp. 412–424. https://doi.org/10.1016/j.jmsy.2025.01.070
- Hao, Z. J., Di Maio, F., and Zio, E., 2021. A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O and M of cyber-physical energy systems for reliable and safe power production and supply. Reliability Engineering and System Safety, 215, 107938.
- Hossain, M. I., Talapatra, S., Saha, P., and Belal, H. M., 2024. From theory to practice: Leveraging digital twin technologies and supply chain disruption mitigation strategies for enhanced supply chain resilience with strategic fit in focus. Discover Sustainability, 5(1), Pp. 1–15. https://doi.org/10.1007/s43621-024-00024-4
- Hu, X., Zhang, L., and Wang, J., 2023. Deep learning framework for gas turbine performance digital twin and fault diagnosis. Reliability Engineering and System Safety, 229, 108837. https://doi.org/10.1016/j.ress.2023.108837
- ljiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., and Odeyemi, M. O., 2024. Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 18(03), Pp. 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf

- Jiang, P., Li, K., and Zeng, M., 2019. A review of anomaly detection techniques in industrial systems using sensor data. Journal of Industrial Information Integration, 17, 100133. https://doi.org/10.1016/j.jii.2019.100133
- Kapteyn, M. G., and Willcox, K. E., 2020. Predictive digital twins: Where dynamic data-driven learning meets physics-based modeling. In Handbook of Dynamic Data Driven Applications Systems (pp. 3–17). Springer. https://doi.org/10.1007/978-3-030-61725-7\_1
- Ketzler, B., Fietkiewicz, K. J., and Stock, W. G., 2023. Assessing governance implications of city digital twin technology: A systematic review. Technological Forecasting and Social Change, 190, 122456. https://doi.org/10.1016/j.techfore.2023.122456
- Klein, G. J., Kaviany, M., and Kim, D., 2015. Interdependence of energy and infrastructure resilience in coupled systems. Energy, 93, Pp. 1062– 1070. https://doi.org/10.1016/j.energy.2015.09.030
- Kouadio, L. F., and Ouedraogo, O. S., 2020. Best practices for policy design in high-risk areas: A systematic review of approaches to resilience building. Journal of Risk Research, 23(5), Pp. 605-621. https://doi.org/10.1080/13669877.2019.1669462
- Lee, J., Davari, H., Singh, J., and Pandhare, V., 2018. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems.

  Manufacturing Letters, 18, Pp. 20–23. https://doi.org/10.1016/j.mfglet.2018.09.002
- Liu, H., and Zhang, L., 2020. Predicting mechanical failure in gas turbines using deep neural networks. IEEE Transactions on Industrial Electronics, 67(11), Pp. 9183–9191. https://doi.org/10.1109/TIE.2020.2974311
- McKeen, W., and Edwards, D., 2023. Enhancing infrastructure resilience: The role of public-private partnerships in funding maintenance strategies. Journal of Infrastructure Systems, 29(4), Pp. 1-15. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000893
- Mores, P. L., Manassaldi, J. I., Scenna, N. J., Caballero, J. A., Mussati, M. C., and Mussati, S. F., 2018. Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and  $\rm CO_2$  capture processes by minimizing the mitigation cost. Chemical Engineering Journal, 335, Pp. 1–13. https://doi.org/10.1016/j.cej.2017.10.146
- Nguyen, A., and Hill, C. A., 2021. Integrating disaster risk reduction into infrastructure policy: A comprehensive framework. International Journal of Disaster Risk Reduction, 53, 101970. https://doi.org/10.1016/j.ijdrr.2020.101970
- Okika, N., Okoh, O. F., and Etuk, E. E., 2025. Mitigating insider threats and social engineering tactics in advanced persistent threat operations through behavioral analytics and cybersecurity training. International Journal of Advance Research Publication and Reviews, 2(3), Pp. 11–27. https://www.ijarpr.com
- Okoh, O. F., Ukpoju, E. A., Otakwu, A., Ayoola, V. B., and Ijiga, A. C., 2024.
  Evaluating the Influence of Human Capital Development on
  Economic Growth: A Global Analysis of the Potential Impact of
  Artificial Intelligence Technologies. Corporate Sustainable
  Management Journal (CSMJ) 2(1) Pp. 49-59,
  http://doi.org/10.26480/csmj.01.2024.49.59
- Okoh, O. F., Batur, D. S., Ogwuche, A. O., Fadeke, A. A. and Adeyeye, Y., 2025. The Role of Comprehensive Sexual and Reproductive Health Education in Reducing Dropout Rates Among Adolescents in Northern and Southern Nigeria. International Journal of Advance Research Publication and Reviews. 2(1), Pp. 30-48, ISSN: 3049-0103
- Okoh, O. F., Batur, S. D., Ogwuche, A. O., Fadeke, A. A. and Adeyeye, Y., 2025. The Influence of Digital Health Literacy Education on Adolescent Risk

- Behaviors: A Cross-Cultural Study of Japan and Uruguay. International Journal of Advance Research Publication and Reviews 2(1), Pp. 49-66, ISSN: 3049-0103
- Okoh, O. F., Fadeke, A. A, Ogwuche, A.O. and Adeyeye, Y., 2024. Integrating Health Education into School Management Practices and Its Impact on Academic Performance in Rural Communities: A Comparative Study of Nigeria, Canada, and Brazil. International Journal of Advance Research Publication and Reviews, 1(2), E-ISSN 3049-0103
- Okoh, O. F., Fadeke, A. A, Ogwuche, A.O. and Adeyeye, Y., 2024. The Role of Educational Leadership in Enhancing Health Literacy and Implementing School-Based Mental Health Programs: Challenges and Opportunities in Developing Nations. International Journal of Advance Research Publication and Reviews, 1(2), E-ISSN 3049-0103.
- Okoh, O. F., Ukpoju, E. A., Otakwu. A., Ayoolad, V. B. and Enyejo, L. A., 2024. Construction Management: Some Issues In The Construction Project. Engineering Heritage Journal (GWK). ISSN: 2521-0440 (Online). DOI: http://doi.org/10.26480/gwk.01.2024.42.50
- Omachi, A., Batur, D. S., Ogwuche, A. O., Fadeke, A.A. and Adeyeye, Y., 2025.

  The Impact of School-Based Mental Health Interventions on
  Academic Resilience through a Comparative Study of Secondary
  Schools in Indonesia and Argentina. International Journal of Advance
  Research Publication and Reviews 2(1), Pp. 15-29, ISSN: 3049-0103
- Panos, E., Kannan, R., and Pravettoni, M., 2021. Long-term impacts of climate change on electricity systems with high shares of renewable generation. Applied Energy, 285, 116427. https://doi.org/10.1016/j.apenergy.2021.116427
- Panteli, M., and Mancarella, P., 2017. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electric Power Systems Research, 127, Pp. 259–270. https://doi.org/10.1016/j.epsr.2015.06.012
- Panteli, M., and Mancarella, P., 2017. Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events. IEEE Systems Journal, 11(3), Pp. 1733–1742. https://doi.org/10.1109/JSYST.2015.2389272
- Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., and Zio, E., 2020. Deep reinforcement learning for optimizing operation and maintenance of energy systems equipped with PHM capabilities. Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, Pp. 1249–1256.
- Raphael, F. O., Okoh, O. F., Omachi, A., and Abiojo, A. D., 2025. Economic implications of avian influenza vaccination programs in poultry production. International Journal of Advance Research Publication and Reviews, 2(4), Pp. 10–34. https://www.ijarpr.com
- Smith, A., and Allen, R., 2022. Sustainable financing for infrastructure resilience in the face of climate risks: A case study analysis. International Journal of Climate Change Strategies and Management, 14(3), Pp. 567-586. https://doi.org/10.1108/IJCCSM-02-2022-0184
- Xu, W., Li, B., and Zhang, X., 2020. Real-time anomaly detection for industrial big data using machine learning methods. IEEE Transactions on Industrial Informatics, 16(2), Pp. 1145–1153. https://doi.org/10.1109/TII.2019.2915612
- Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., and Gao, R. X., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, Pp. 213–237. https://doi.org/10.1016/j.ymssp.2018.05.050
- Zhao, Y., Wang, H., and Li, Y., 2024. Predictive modeling of combined cycle power plant performance using a digital twin approach. Data in Brief, 50, 109582. https://doi.org/10.1016/j.dib.2024.109582

